java图像校正(图像水平校正)

今天给各位分享java图像校正的知识,其中也会对图像水平校正进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

1、怎么用java代码放大或缩小图片不失真。2、java图像处理 – 图片上的数字字母圆滑处理方法3、如何使用java打开图像,然后以对图像的像素矩阵进行处理,然后以相同的质量因子保存为新图像4、新手学习使用Java,尝试着做一个项目使用Java做一个视频图像的处理。5、Java 图像识别 数字图像处理 从一张JPG图片中识别出若干黑色小方块6、Java处理bmp图像,怎样操作BMP位图的数据

怎么用java代码放大或缩小图片不失真。

放大图像不会导致失真,而缩小图像将不可避免的失真。

Java中也同样是这样。

但java提供了4个缩放的微调选项。

image.SCALE_SMOOTH

//平滑优先

image.SCALE_FAST//速度优先

image.SCALE_AREA_AVERAGING

//区域均值

image.SCALE_REPLICATE

//像素复制型缩放

image.SCALE_DEFAULT

//默认缩放模式

调用方法

Image

new_img=old_img.getScaledInstance(1024,

768,

Image.SCALE_SMOOTH);

得到一张缩放后的新图。

java图像校正(图像水平校正)

java图像处理 – 图片上的数字字母圆滑处理方法

抗锯齿的代码我倒是有一个,你试一下,输出图片第一行是不抗锯齿的,第二行是抗锯齿的。

public static void main(String[] args) throws IOException {

BufferedImage image = new BufferedImage(400, 200, BufferedImage.TYPE_4BYTE_ABGR_PRE);

Graphics2D g2d = image.createGraphics();

g2d.setColor(Color.WHITE);

g2d.fillRect(0, 0, 400, 200);

g2d.setColor(Color.BLACK);

g2d.setFont(new Font(“Arial”, Font.PLAIN, 37));

g2d.drawString(“jjyygg789@163.com”, 10f, 40f);

g2d.setRenderingHint(RenderingHints.KEY_TEXT_ANTIALIASING, RenderingHints.VALUE_TEXT_ANTIALIAS_ON);// 设置抗锯齿效果

g2d.drawString(“jjyygg789@163.com”, 10f, 80f);

File outputfile = new File(“D:\\TestGraphics.png”);

ImageIO.write(image, “PNG”, outputfile);

}

如何使用java打开图像,然后以对图像的像素矩阵进行处理,然后以相同的质量因子保存为新图像

/** A demonstration of various image processing filters */

public class ImageOps extends JPanel {

static final int WIDTH = 600, HEIGHT = 675; // Size of our example

public String getName() {

return “Image Processing”;

}

public int getWidth() {

return WIDTH;

}

public int getHeight() {

return HEIGHT;

}

Image image;

/** This constructor loads the image we will manipulate */

public ImageOps() {

image = new javax.swing.ImageIcon(“C:\\Sunset.jpg”).getImage();

}

// These arrays of bytes are used by the LookupImageOp image filters below

static byte[] brightenTable = new byte[256];

static byte[] thresholdTable = new byte[256];

static { // Initialize the arrays

for (int i = 0; i 256; i++) {

brightenTable[i] = (byte) (Math.sqrt(i / 255.0) * 255);

thresholdTable[i] = (byte) ((i 225) ? 0 : i);

}

}

// This AffineTransform is used by one of the image filters below

static AffineTransform mirrorTransform;

static { // Create and initialize the AffineTransform

mirrorTransform = AffineTransform.getTranslateInstance(127, 0);

mirrorTransform.scale(-1.0, 1.0); // flip horizontally

}

// These are the labels we’ll display for each of the filtered images

static String[] filterNames = new String[]{“Original”, “Gray Scale”,

“Negative”, “Brighten (linear)”, “Brighten (sqrt)”, “Threshold”,

“Blur”, “Sharpen”, “Edge Detect”, “Mirror”, “Rotate (center)”,

“Rotate (lower left)”};

// The following BufferedImageOp image filter objects perform

// different types of image processing operations.

static BufferedImageOp[] filters = new BufferedImageOp[]{

// 1) No filter here. We’ll display the original image

null,

// 2) Convert to Grayscale color space

new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null),

// 3) Image negative. Multiply each color value by -1.0 and add 255

new RescaleOp(-1.0f, 255f, null),

// 4) Brighten using a linear formula that increases all color

// values

new RescaleOp(1.25f, 0, null),

// 5) Brighten using the lookup table defined above

new LookupOp(new ByteLookupTable(0, brightenTable), null),

// 6) Threshold using the lookup table defined above

new LookupOp(new ByteLookupTable(0, thresholdTable), null),

// 7) Blur by “convolving” the image with a matrix

new ConvolveOp(new Kernel(3, 3, new float[]{.1111f, .1111f,

.1111f, .1111f, .1111f, .1111f, .1111f, .1111f, .1111f,})),

// 8) Sharpen by using a different matrix

new ConvolveOp(new Kernel(3, 3, new float[]{0.0f, -0.75f, 0.0f,

-0.75f, 4.0f, -0.75f, 0.0f, -0.75f, 0.0f})),

// 9) Edge detect using yet another matrix

new ConvolveOp(new Kernel(3, 3, new float[]{0.0f, -0.75f, 0.0f,

-0.75f, 3.0f, -0.75f, 0.0f, -0.75f, 0.0f})),

// 10) Compute a mirror image using the transform defined above

new AffineTransformOp(mirrorTransform,

AffineTransformOp.TYPE_BILINEAR),

// 11) Rotate the image 180 degrees about its center point

new AffineTransformOp(AffineTransform.getRotateInstance(Math.PI,

64, 95), AffineTransformOp.TYPE_NEAREST_NEIGHBOR),

// 12) Rotate the image 15 degrees about the bottom left

new AffineTransformOp(AffineTransform.getRotateInstance(

Math.PI / 12, 0, 190),

AffineTransformOp.TYPE_NEAREST_NEIGHBOR),};

/** Draw the example */

public void paint(Graphics g1) {

Graphics2D g = (Graphics2D) g1;

// Create a BufferedImage big enough to hold the Image loaded

// in the constructor. Then copy that image into the new

// BufferedImage object so that we can process it.

BufferedImage bimage = new BufferedImage(image.getWidth(this), image.getHeight(this), BufferedImage.TYPE_INT_RGB);

Graphics2D ig = bimage.createGraphics();

ig.drawImage(image, 0, 0, this); // copy the image

// Set some default graphics attributes

g.setFont(new Font(“SansSerif”, Font.BOLD, 12)); // 12pt bold text

g.setColor(Color.green); // Draw in green

g.translate(10, 10); // Set some margins

// Loop through the filters

for (int i = 0; i filters.length; i++) {

// If the filter is null, draw the original image, otherwise,

// draw the image as processed by the filter

if (filters[i] == null) {

g.drawImage(bimage, 0, 0, this);

} else {

g.drawImage(filters[i].filter(bimage, null), 0, 0, this);

}

g.drawString(filterNames[i], 0, 205); // Label the image

g.translate(137, 0); // Move over

if (i % 4 == 3) {

g.translate(-137 * 4, 215); // Move down after 4

}

}

}

public static void main(String[] a) {

JFrame f = new JFrame();

f.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

});

f.setContentPane(new ImageOps());

f.pack();

f.setVisible(true);

}

}

更多例子请到java2s.com

新手学习使用Java,尝试着做一个项目使用Java做一个视频图像的处理。

Java图像处理技巧四则

下面代码中用到的sourceImage是一个已经存在的Image对象

图像剪切

对于一个已经存在的Image对象,要得到它的一个局部图像,可以使用下面的步骤:

//import java.awt.*;

//import java.awt.image.*;

Image croppedImage;

ImageFilter cropFilter;

CropFilter =new CropImageFilter(25,30,75,75); //四个参数分别为图像起点坐标和宽高,即CropImageFilter(int x,int y,int width,int height),详细情况请参考API

CroppedImage= Toolkit.getDefaultToolkit().createImage(new FilteredImageSource(sourceImage.getSource(),cropFilter));

如果是在Component的子类中使用,可以将上面的Toolkit.getDefaultToolkit().去掉。FilteredImageSource是一个ImageProducer对象。

图像缩放

对于一个已经存在的Image对象,得到它的一个缩放的Image对象可以使用Image的getScaledInstance方法:

Image scaledImage=sourceImage. getScaledInstance(100,100, Image.SCALE_DEFAULT); //得到一个100X100的图像

Image doubledImage=sourceImage. getScaledInstance(sourceImage.getWidth(this)*2,sourceImage.getHeight(this)*2, Image.SCALE_DEFAULT); //得到一个放大两倍的图像,这个程序一般在一个swing的组件中使用,而类Jcomponent实现了图像观察者接口ImageObserver,所有可以使用this。

//其它情况请参考API

灰度变换

下面的程序使用三种方法对一个彩色图像进行灰度变换,变换的效果都不一样。一般而言,灰度变换的算法是将象素的三个颜色分量使用R*0.3+G*0.59+ B*0.11得到灰度值,然后将之赋值给红绿蓝,这样颜色取得的效果就是灰度的。另一种就是取红绿蓝三色中的最大值作为灰度值。java核心包也有一种算法,但是没有看源代码,不知道具体算法是什么样的,效果和上述不同。

/* GrayFilter.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class GrayFilter extends RGBImageFilter {

int modelStyle;

public GrayFilter() {

modelStyle=GrayModel.CS_MAX;

canFilterIndexColorModel=true;

}

public GrayFilter(int style) {

modelStyle=style;

canFilterIndexColorModel=true;

}

public void setColorModel(ColorModel cm) {

if (modelStyle==GrayModel

else if (modelStyle==GrayModel

}

public int filterRGB(int x,int y,int pixel) {

return pixel;

}

}

/* GrayModel.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class GrayModel extends ColorModel {

public static final int CS_MAX=0;

public static final int CS_FLOAT=1;

ColorModel sourceModel;

int modelStyle;

public GrayModel(ColorModel sourceModel) {

super(sourceModel.getPixelSize());

this.sourceModel=sourceModel;

modelStyle=0;

}

public GrayModel(ColorModel sourceModel,int style) {

super(sourceModel.getPixelSize());

this.sourceModel=sourceModel;

modelStyle=style;

}

public void setGrayStyle(int style) {

modelStyle=style;

}

protected int getGrayLevel(int pixel) {

if (modelStyle==CS_MAX) {

return Math.max(sourceModel.getRed(pixel),Math.max(sourceModel.getGreen(pixel),sourceModel.getBlue(pixel)));

}

else if (modelStyle==CS_FLOAT){

return (int)(sourceModel.getRed(pixel)*0.3+sourceModel.getGreen(pixel)*0.59+sourceModel.getBlue(pixel)*0.11);

}

else {

return 0;

}

}

public int getAlpha(int pixel) {

return sourceModel.getAlpha(pixel);

}

public int getRed(int pixel) {

return getGrayLevel(pixel);

}

public int getGreen(int pixel) {

return getGrayLevel(pixel);

}

public int getBlue(int pixel) {

return getGrayLevel(pixel);

}

public int getRGB(int pixel) {

int gray=getGrayLevel(pixel);

return (getAlpha(pixel)24)+(gray16)+(gray8)+gray;

}

}

如果你有自己的算法或者想取得特殊的效果,你可以修改类GrayModel的方法getGrayLevel()。

色彩变换

根据上面的原理,我们也可以实现色彩变换,这样的效果就很多了。下面是一个反转变换的例子:

/* ReverseColorModel.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class ReverseColorModel extends ColorModel {

ColorModel sourceModel;

public ReverseColorModel(ColorModel sourceModel) {

super(sourceModel.getPixelSize());

this.sourceModel=sourceModel;

}

public int getAlpha(int pixel) {

return sourceModel.getAlpha(pixel);

}

public int getRed(int pixel) {

return ~sourceModel.getRed(pixel);

}

public int getGreen(int pixel) {

return ~sourceModel.getGreen(pixel);

}

public int getBlue(int pixel) {

return ~sourceModel.getBlue(pixel);

}

public int getRGB(int pixel) {

return (getAlpha(pixel)24)+(getRed(pixel)16)+(getGreen(pixel)8)+getBlue(pixel);

}

}

/* ReverseColorModel.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class ReverseFilter extends RGBImageFilter {

public ReverseFilter() {

canFilterIndexColorModel=true;

}

public void setColorModel(ColorModel cm) {

substituteColorModel(cm,new ReverseColorModel(cm));

}

public int filterRGB(int x,int y,int pixel) {

return pixel;

}

}

要想取得自己的效果,需要修改ReverseColorModel.java中的三个方法,getRed、getGreen、getBlue。

下面是上面的效果的一个总的演示程序。

/*GrayImage.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.*;

import java.awt.image.*;

import javax.swing.*;

import java.awt.color.*;

public class GrayImage extends JFrame{

Image source,gray,gray3,clip,bigimg;

BufferedImage bimg,gray2;

GrayFilter filter,filter2;

ImageIcon ii;

ImageFilter cropFilter;

int iw,ih;

public GrayImage() {

ii=new ImageIcon(\”images/11.gif\”);

source=ii.getImage();

iw=source.getWidth(this);

ih=source.getHeight(this);

filter=new GrayFilter();

filter2=new GrayFilter(GrayModel.CS_FLOAT);

gray=createImage(new FilteredImageSource(source.getSource(),filter));

gray3=createImage(new FilteredImageSource(source.getSource(),filter2));

cropFilter=new CropImageFilter(5,5,iw-5,ih-5);

clip=createImage(new FilteredImageSource(source.getSource(),cropFilter));

bigimg=source.getScaledInstance(iw*2,ih*2,Image.SCALE_DEFAULT);

MediaTracker mt=new MediaTracker(this);

mt.addImage(gray,0);

try {

mt.waitForAll();

} catch (Exception e) {

}

Java 图像识别 数字图像处理 从一张JPG图片中识别出若干黑色小方块

你需要关注的主要是这个类:java.awt.image.BufferedImage

可以查阅相关的API。

java图像处理技术在《java核心技术8 下卷》中有比较详细的介绍。

相关技术要求和注意事项:RGB标准、ICC配置特性、

建议如果进行像素识别的话可以选取关键点的识别方式、而且确认像素是否符合要求使用RGB的范围识别而非精确识别。

至于具体的识别操作过程,需要你详细定义开始识别的位置标准(规定的或者识别图像获取)、边界标准、大小(识别块得SIZE)、分组(给识别块确定属性)等

Java处理bmp图像,怎样操作BMP位图的数据

bmp图像文件数据分为三个部分:

1、前14个字节为文件信息头,在这部分信息中包含了位图信息标志、该bmp图像的大小和图像实际数据的相对偏移量这三部分有用的信息。

位图标志一定为“0x4D42”,否则,该文件不是bmp图像。

在VC++中,这14个字节对应一个数据类型,类型名为“BITMAPFILEHEADER”,它的定义为:

typedef struct tagBITMAPFILEHEADER {

WORD bfType; //位图信息标志

DWORD bfSize; //图像的大小

WORD bfReserved1;

WORD bfReserved2;

DWORD bfOffBits; //图像实际数据的相对偏移量

} BITMAPFILEHEADER, FAR *LPBITMAPFILEHEADER, *PBITMAPFILEHEADER;

可以设一个该类型的变量:BITMAPFILEHEADER bmfh,将bmp图像文件的前14字节数据读入这个变量中,然后通过判断bmfh.bfType == 0x4D42,确定是不是为bmp图像。

2、接下来40个字节为位图信息头,其中存储了该bmp图像的有关信息。这些信息包括:图像宽度(像素)、图像高度(像素)、图像长度(字节,仅仅是图像实际数据的长度,不包括各个信息头)、水平分辨率、垂直分辨率、每个像素的存储位数等信息。

其中,通过“每个像素的存储位数”这个信息可以知道图像的颜色:

如果“每个像素的存储位数”的值只有四种:为1,说明图像只有两种颜色(黑、白);为4,说明图像有16种颜色;为8,说明图像有256种颜色;为24,说明该图像为真彩色图像,颜色数为2^24。这四种取值对应四种bmp图像,也就是说,bmp图像只有这四种。

在这四种bmp图像种,前三种都需要在图像文件中包含调色板数据,分别存储三种图像的2、16、256种颜色。而最后一种bmp格式的图像不需要调色板,因为这种图像的“每个像素的存储位数”值为24,也就是说,存储一个像素值需要24位,正好可以存储一个像素的颜色(红、绿、蓝各8位)。

在VC++中,这40个字节的位图信息头也有一个数据类型,类型名为“BITMAPINFOHEADER”,它的定义为:

typedef struct tagBITMAPINFOHEADER{

DWORD biSize;

LONG biWidth; //图像宽度(像素)

LONG biHeight; //图像高度(像素)

WORD biPlanes;

WORD biBitCount; //每个像素的存储位数

DWORD biCompression;

DWORD biSizeImage; //图像长度(字节,仅仅是图像实际数据的长度,不包括各个信息头)

LONG biXPelsPerMeter; //水平分辨率

LONG biYPelsPerMeter; //垂直分辨率

DWORD biClrUsed;

DWORD biClrImportant;

} BITMAPINFOHEADER, FAR *LPBITMAPINFOHEADER, *PBITMAPINFOHEADER;

3、接下来若干个字节为调色板,只有前三种bmp图像有,第四种真彩色bmp图像没有这部分数据。

调色板是一个数组,每个数组元素有四字节,只有三个字节有用,另外一个没有。有用的三个字节存储一种颜色(红绿蓝各占一字节),这四个字节在VC++中定义为:

typedef struct tagRGBQUAD {

BYTE rgbBlue;

BYTE rgbGreen;

BYTE rgbRed;

BYTE rgbReserved;

} RGBQUAD;

定义一个这种类型的数组即为调色板。数组的长度可由BITMAPINFOHEADER中的biBitCount推算出来。

4、上述三部分信息之后,即是实际的像素数据。一个像素的存储位数为1、4、8或16,正如前面所述。

如果是1位,对应的bmp图像应该有一个长度为2的调色板。这一位的值只能是0或1,用来指明该像素的颜色在调色板中的地址。

如果是4位,对应的bmp图像应该有一个长度为16的调色板。这4位的值有16种,同样指示该像素的颜色在调色板中的地址。

如果是8位,对应的bmp图像应该有一个长度为256的调色板。这8位的值有256种,同样指示该像素的颜色在调色板中的地址。

如果是24位,对应的bmp图像没有调色板,该像素的颜色由这24位数据直接表示。

bmp图像的数据就这几个部分。

任何一个bmp图像的像素都是由红绿蓝三种颜色组成(带调色板也好,不带调色板也好)。如果一个像素的红绿蓝三种色的值相等,那么该像素就是灰色的。灰度图是这样一种有严格规定的bmp图像:它是上述四种bmp图像的第三种,并且它的调色板的每个数组元素的红绿蓝三值都相同,所以灰度图的灰度种数是256。

若要保存图像,需要按顺序保存文件信息头、位图信息头、调色板(如果有)和图像的实际数据。程序可以这样写:

bool Write(CString FileName)

{

CFile file;

BITMAPFILEHEADER bmfh;

if(! (bmi pBits))

{

AfxMessageBox(“Data is not valid!”);

return FALSE;

}

//创建文件

if(!file.Open(FileName,CFile::modeCreate | CFile::modeWrite))

{

AfxMessageBox(“File creating fails!”);

return FALSE;

}

//填写文件信息头

bmfh.bfType = 0x4d42;

bmfh.bfReserved1 = bmfh.bfReserved2 = 0;

int nInfoSize = sizeof(BITMAPINFOHEADER) + GetPaletteSize() * sizeof(RGBQUAD);

bmfh.bfOffBits = sizeof(bmfh) + nInfoSize;

bmfh.bfSize = bmfh.bfOffBits + bmi-bmiHeader.biSizeImage;

//写文件

file.Write( (LPVOID)bmfh, sizeof(bmfh));

file.Write( (LPVOID)bmi, nInfoSize);

file.Write( (LPVOID)pBits, bmi-bmiHeader.biSizeImage);

return TRUE;

}

java图像校正的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于图像水平校正、java图像校正的信息别忘了在本站进行查找喔。

本文来自投稿,不代表【】观点,发布者:【

本文地址: ,如若转载,请注明出处!

举报投诉邮箱:253000106@qq.com

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2024年4月2日 14:30:57
下一篇 2024年4月2日 14:39:08

相关推荐

  • 深入java虚拟机pdf,深入java虚拟机 中村成洋 pdf

    在linux环境下,java怎么实现从word格式转换为pdf格式 //设置当前使用的打印机,我的Adobe Distiller打印机名字为 Adobe PDF wordCom.setProperty( ActivePrinter , new Variant( Adobe PDF ));//设置printout的参数,将word文档打印为postscript…

    2024年5月23日
    4400
  • java截取指定长度字符串,java截取指定字符串之后的

    java中如何截取字符串中的指定一部分 第一个参数是开始截取的字符位置。(从0开始)第二个参数是结束字符的位置+1。(从0开始)indexof函数的作用是查找该字符串中的某个字的位置,并且返回。 int end);截取s中从begin开始至end结束时的字符串,并将其赋值给s;split讲解:java.lang.string.split split 方法 将…

    2024年5月23日
    4200
  • java绑定一个端口,java使用端口

    java如何多个service共用一个端口 你如果有多个项目的话,你可以把多个项目放到一个tomcat里面,这样端口相同使用项目名称来进行区分项目。你如果非要使用同一个,你也可以配置不同的域名导向不同的项目。就是访问的域名不同转接到的项目不同。 如果需要同时启动多个程序,要么修改tomcat的配置文件中的监听端口。要么修改jar包程序的监听端口。不能在一台服…

    2024年5月23日
    3400
  • java多线程并发编程基础,Java多线程并发执行返回

    电脑培训分享Java并发编程:核心理论 电脑培训发现本系列会从线程间协调的方式(wait、notify、notifyAll)、Synchronized及Volatile的本质入手,详细解释JDK为我们提供的每种并发工具和底层实现机制。 人们开始意识到了继承的众多缺点,开始努力用聚合代替继承。软件工程解决扩展性的重要原则就是抽象描述,直接使用的工具就是接口。接…

    2024年5月23日
    4600
  • 自学java找工作,自学java找工作需要包装简历吗

    自学java学多久可以找到工作 1、自学Java至少需要一年以上的时间才能达到找工作的水平。报班培训四到六个月的时间就可以找到一份不错的工作。 2、自学Java至少需要一年以上的时间才能达到找工作的水平。 3、如果要想找到一份Java相关的工作,需要至少学习5-6个月时间才能就业。Java开发需要掌握一些基础的编程语言知识,比如掌握面向对象的编程思想、基本的…

    2024年5月23日
    4300
  • java左移右移,java 左移

    java位移问题 1、思路:直接用Integer类的bit运算操作。 2、移位操作:左移:向左移位,符号后面的数字是移了多少位,移的位用0补齐,例如2进制数01111111左移一位后变为11111110,移位是字节操作。 3、Java 位运算 Java 位运算[转]一,Java 位运算表示方法: 在Java语言中,二进制数使用补码表示,最高位为符号位,正数的…

    2024年5月23日
    4100
  • java技术规范,java规范性要求

    现在主流的JAVA技术是什么? java最流行开发技术程序员必看 1 、Git Git一直是世界上最受欢迎的Java工具之一,也是Java开发人员最杰出的工具之一。Git是一个开源工具,是-种出色的分布式版本控制解决方案。 (1).Java基础语法、数组、类与对象、继承与多态、异常、范型、集合、流与文件、反射、枚举、自动装箱和注解。(2).Java面向对象编…

    2024年5月23日
    4000
  • javasocket编程,Java socket编程中,禁用nagle算法的参数

    Java进行并发多连接socket编程 1、Java可利用ServerSocket类对外部客户端提供多个socket接口。基本的做法是先创建一个ServerSocket实例,并绑定一个指定的端口,然后在这个实例上调用accept()方法等待客户端的连接请求。 2、Socket socket=server.accept(0;Thread handleThrea…

    2024年5月23日
    4600
  • java死亡,java死代码是什么意思

    我的世界传送回死亡点指令是什么? 1、下面就让我们一起来了解一下吧:我的世界回到死的地方的指令是输入/back,就可以回到死亡地点了,当然也可以看信标,因为死亡后会有一道光集中在死亡点,只要循着光就可以找到目的地了。 2、在服务器中的指令 首先打开指令台,在指令行输入“/back”就可以回到自己的死亡地点了。在单人游戏中的指令 在单人游戏中,您无法直接返回到…

    2024年5月23日
    4800
  • myeclipse能部署java工程么,myeclipse支持jdk18

    myeclipse如何建java文件 1、点击【File】—【New】–【Class】在如下界面,输入Class的名字,如Test,点击【Finish】。Test.java文件创建成功。 2、点击【File】—【New】–【Class】 在如下界面,输入Class的名字,如Test,点击【Finish】。 Te…

    2024年5月23日
    3900

发表回复

登录后才能评论



关注微信