关于javamd5工具包的信息

本篇文章给大家谈谈javamd5工具包,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

1、java web md5加密的使用2、java MD5 加密包下载3、JAVA中有没有提供MD5算法的包啊?4、java 有哪些jar包直接提供了获得md5值的方法?5、可变MD5加密(Java实现)

java web md5加密的使用

1、Java中你可以用MD5 util工具类,网上有md5工具类的,你下载一个,在数据入库时候,进行密文md5一下在存入数据库就行

2、非重要性数据使用md5是没有意义的

3、以上个人观点,如果还有什么不懂的可以在继续追问

关于javamd5工具包的信息

java MD5 加密包下载

md5加密不用下载的……

查java的api中的MessageDigester类就行了,几行代码就行。(学java的不会没有api吧……)

引用api部分:

public abstract class MessageDigest

extends MessageDigestSpi

此 MessageDigest 类为应用程序提供信息摘要算法的功能,如 MD5 或 SHA 算法。信息摘要是安全的单向哈希函数,它接收任意大小的数据,输出固定长度的哈希值。

MessageDigest 对象开始被初始化。该对象通过使用 update 方法处理数据。任何时候都可以调用 reset 方法重置摘要。一旦所有需要更新的数据都已经被更新了,应该调用 digest 方法之一完成哈希计算。

对于给定数量的更新数据,digest 方法只能被调用一次。digest 被调用后,MessageDigest 对象被重新设置成其初始状态。

实现可随意选择是否实现 Cloneable 接口。客户端应用程可以通过尝试复制和捕获 CloneNotSupportedException 测试可复制性:

MessageDigest md = MessageDigest.getInstance(“SHA”);

try {

md.update(toChapter1);

MessageDigest tc1 = md.clone();

byte[] toChapter1Digest = tc1.digest();

md.update(toChapter2);

…etc.

} catch (CloneNotSupportedException cnse) {

throw new DigestException(“couldn’t make digest of partial content”);

}

注意,如果给定的实现是不可复制的,而事先已知摘要的数目,则仍然能够通过实例化几个实例计算中间摘要。

注意,由于历史原因,此类是抽象的,是从 MessageDigestSpi 扩展的。应用程序开发人员只应该注意在此 MessageDigest 类中定义的方法;超类中的所有方法是供希望提供自己的信息摘要算法实现的加密服务提供者使用的。

JAVA中有没有提供MD5算法的包啊?

有,在java.security包的MessageDigest类。

例子:

import java.security.MessageDigest;

public class Test2 {

public static void main(String[] args) {

Test2 t = new Test2();

System.out.println(t.bytesToMD5(“a”.getBytes()));

}

//把字节数组转成16进位制数

public String bytesToHex(byte[] bytes) {

StringBuffer md5str = new StringBuffer();

//把数组每一字节换成16进制连成md5字符串

int digital;

for (int i = 0; i bytes.length; i++) {

digital = bytes[i];

if(digital 0) {

digital += 256;

}

if(digital 16){

md5str.append(“0”);

}

md5str.append(Integer.toHexString(digital));

}

return md5str.toString();

}

//把字节数组转换成md5

public String bytesToMD5(byte[] input) {

String md5str = null;

try {

//创建一个提供信息摘要算法的对象,初始化为md5算法对象

MessageDigest md = MessageDigest.getInstance(“MD5”);

//计算后获得字节数组

byte[] buff = md.digest(input);

//把数组每一字节换成16进制连成md5字符串

md5str = bytesToHex(buff);

} catch (Exception e) {

e.printStackTrace();

}

return md5str;

}

}

java 有哪些jar包直接提供了获得md5值的方法?

需要导入一个jar包:commons-codec

代码如下:

import org.apache.commons.codec.digest.DigestUtils; 

public class ToMain {

public static void main(String[] args) {

System.out.println(DigestUtils.md5Hex(“baidu.com”));

}

}

1、Java

Java是一种可以撰写跨平台应用软件的面向对象的程序设计语言。Java 技术具有卓越的通用性、高效性、平台移植性和安全性,广泛应用于PC、数据中心、游戏控制台、科学超级计算机、移动电话和互联网,同时拥有全球最大的开发者专业社群。

2、名字来源

Java是印度尼西亚爪哇岛的英文名称,因盛产咖啡而闻名。Java语言中的许多库类名称,多与咖啡有关:如JavaBeans(咖啡豆)、NetBeans(网络豆)以及ObjectBeans(对象豆)等等。SUN和JAVA的标识也正是一杯正冒着热气的咖啡。

可变MD5加密(Java实现)

可变在这里含义很简单 就是最终的加密结果是可变的 而非必需按标准MD 加密实现 Java类库security中的MessageDigest类就提供了MD 加密的支持 实现起来非常方便 为了实现更多效果 我们可以如下设计MD 工具类

Java代码

package ** ** util;

import java security MessageDigest;

/**

* 标准MD 加密方法 使用java类库的security包的MessageDigest类处理

* @author Sarin

*/

public class MD {

/**

* 获得MD 加密密码的方法

*/

public static String getMD ofStr(String origString) {

String origMD = null;

try {

MessageDigest md = MessageDigest getInstance( MD );

byte[] result = md digest(origString getBytes());

origMD = byteArray HexStr(result);

} catch (Exception e) {

e printStackTrace();

}

return origMD ;

}

/**

* 处理字节数组得到MD 密码的方法

*/

private static String byteArray HexStr(byte[] bs) {

StringBuffer *** = new StringBuffer();

for (byte b : bs) {

*** append(byte HexStr(b));

}

return *** toString();

}

/**

* 字节标准移位转十六进制方法

*/

private static String byte HexStr(byte b) {

String hexStr = null;

int n = b;

if (n ) {

//若需要自定义加密 请修改这个移位算法即可

n = b x F + ;

}

hexStr = Integer toHexString(n / ) + Integer toHexString(n % );

return hexStr toUpperCase();

}

/**

* 提供一个MD 多次加密方法

*/

public static String getMD ofStr(String origString int times) {

String md = getMD ofStr(origString);

for (int i = ; i times ; i++) {

md = getMD ofStr(md );

}

return getMD ofStr(md );

}

/**

* 密码验证方法

*/

public static boolean verifyPassword(String inputStr String MD Code) {

return getMD ofStr(inputStr) equals(MD Code);

}

/**

* 重载一个多次加密时的密码验证方法

*/

public static boolean verifyPassword(String inputStr String MD Code int times) {

return getMD ofStr(inputStr times) equals(MD Code);

}

/**

* 提供一个测试的主函数

*/

public static void main(String[] args) {

System out println( : + getMD ofStr( ));

System out println( : + getMD ofStr( ));

System out println( sarin: + getMD ofStr( sarin ));

System out println( : + getMD ofStr( ));

}

}

可以看出实现的过程非常简单 因为由java类库提供了处理支持 但是要清楚的是这种方式产生的密码不是标准的MD 码 它需要进行移位处理才能得到标准MD 码 这个程序的关键之处也在这了 怎么可变?调整移位算法不就可变了么!不进行移位 也能够得到 位的密码 这就不是标准加密了 只要加密和验证过程使用相同的算法就可以了

MD 加密还是很安全的 像CMD 那些穷举破解的只是针对标准MD 加密的结果进行的 如果自定义移位算法后 它还有效么?可以说是无解的了 所以MD 非常安全可靠

为了更可变 还提供了多次加密的方法 可以在MD 基础之上继续MD 就是对 位的第一次加密结果再MD 恩 这样去破解?没有任何意义

这样在MIS系统中使用 安全可靠 欢迎交流 希望对使用者有用

我们最后看看由MD 加密算法实现的类 那是非常庞大的

Java代码

import java lang reflect *;

/**

* **********************************************

* md 类实现了RSA Data Security Inc 在提交给IETF

* 的RFC 中的MD message digest 算法

* ***********************************************

*/

public class MD {

/* 下面这些S S 实际上是一个 * 的矩阵 在原始的C实现中是用#define 实现的

这里把它们实现成为static final是表示了只读 切能在同一个进程空间内的多个

Instance间共享*/

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final byte[] PADDING = {

};

/* 下面的三个成员是MD 计算过程中用到的 个核心数据 在原始的C实现中

被定义到MD _CTX结构中

*/

private long[] state = new long[ ]; // state (ABCD)

private long[] count = new long[ ]; // number of bits modulo ^ (l *** first)

private byte[] buffer = new byte[ ]; // input buffer

/* digestHexStr是MD 的唯一一个公共成员 是最新一次计算结果的

进制ASCII表示

*/

public String digestHexStr;

/* digest 是最新一次计算结果的 进制内部表示 表示 bit的MD 值

*/

private byte[] digest = new byte[ ];

/*

getMD ofStr是类MD 最主要的公共方法 入口参数是你想要进行MD 变换的字符串

返回的是变换完的结果 这个结果是从公共成员digestHexStr取得的.

*/

public String getMD ofStr(String inbuf) {

md Init();

md Update(inbuf getBytes() inbuf length());

md Final();

digestHexStr = ;

for (int i = ; i ; i++) {

digestHexStr += byteHEX(digest[i]);

}

return digestHexStr;

}

// 这是MD 这个类的标准构造函数 JavaBean要求有一个public的并且没有参数的构造函数

public MD () {

md Init();

return;

}

/* md Init是一个初始化函数 初始化核心变量 装入标准的幻数 */

private void md Init() {

count[ ] = L;

count[ ] = L;

///* Load magic initialization constants

state[ ] = x L;

state[ ] = xefcdab L;

state[ ] = x badcfeL;

state[ ] = x L;

return;

}

/* F G H I 是 个基本的MD 函数 在原始的MD 的C实现中 由于它们是

简单的位运算 可能出于效率的考虑把它们实现成了宏 在java中 我们把它们

实现成了private方法 名字保持了原来C中的 */

private long F(long x long y long z) {

return (x y) | ((~x) z);

}

private long G(long x long y long z) {

return (x z) | (y (~z));

}

private long H(long x long y long z) {

return x ^ y ^ z;

}

private long I(long x long y long z) {

return y ^ (x | (~z));

}

/*

FF GG HH和II将调用F G H I进行近一步变换

FF GG HH and II transformations for rounds and

Rotation is separate from addition to prevent reputation

*/

private long FF(long a long b long c long d long x long s long ac) {

a += F(b c d) + x + ac;

a = ((int) a s) | ((int) a ( s));

a += b;

return a;

}

private long GG(long a long b long c long d long x long s long ac) {

a += G(b c d) + x + ac;

a = ((int) a s) | ((int) a ( s));

a += b;

return a;

}

private long HH(long a long b long c long d long x long s long ac) {

a += H(b c d) + x + ac;

a = ((int) a s) | ((int) a ( s));

a += b;

return a;

}

private long II(long a long b long c long d long x long s long ac) {

a += I(b c d) + x + ac;

a = ((int) a s) | ((int) a ( s));

a += b;

return a;

}

/*

md Update是MD 的主计算过程 inbuf是要变换的字节串 inputlen是长度 这个

函数由getMD ofStr调用 调用之前需要调用md init 因此把它设计成private的

*/

private void md Update(byte[] inbuf int inputLen) {

int i index partLen;

byte[] block = new byte[ ];

index = (int) (count[ ] ) x F;

// /* Update number of bits */

if ((count[ ] += (inputLen )) (inputLen ))

count[ ]++;

count[ ] += (inputLen );

partLen = index;

// Transform as many times as possible

if (inputLen = partLen) {

md Memcpy(buffer inbuf index partLen);

md Transform(buffer);

for (i = partLen; i + inputLen; i += ) {

md Memcpy(block inbuf i );

md Transform(block);

}

index = ;

} else

i = ;

///* Buffer remaining input */

md Memcpy(buffer inbuf index i inputLen i);

}

/*

md Final整理和填写输出结果

*/

private void md Final() {

byte[] bits = new byte[ ];

int index padLen;

///* Save number of bits */

Encode(bits count );

///* Pad out to mod

index = (int) (count[ ] ) x f;

padLen = (index ) ? ( index) : ( index);

md Update(PADDING padLen);

///* Append length (before padding) */

md Update(bits );

///* Store state in digest */

Encode(digest state );

}

/* md Memcpy是一个内部使用的byte数组的块拷贝函数 从input的inpos开始把len长度的

字节拷贝到output的outpos位置开始

*/

private void md Memcpy(byte[] output byte[] input int outpos int inpos int len) {

int i;

for (i = ; i len; i++)

output[outpos + i] = input[inpos + i];

}

/*

md Transform是MD 核心变换程序 有md Update调用 block是分块的原始字节

*/

private void md Transform(byte block[]) {

long a = state[ ] b = state[ ] c = state[ ] d = state[ ];

long[] x = new long[ ];

Decode(x block );

/* Round */

a = FF(a b c d x[ ] S xd aa L); /* */

d = FF(d a b c x[ ] S xe c b L); /* */

c = FF(c d a b x[ ] S x dbL); /* */

b = FF(b c d a x[ ] S xc bdceeeL); /* */

a = FF(a b c d x[ ] S xf c fafL); /* */

d = FF(d a b c x[ ] S x c aL); /* */

c = FF(c d a b x[ ] S xa L); /* */

b = FF(b c d a x[ ] S xfd L); /* */

a = FF(a b c d x[ ] S x d L); /* */

d = FF(d a b c x[ ] S x b f afL); /* */

c = FF(c d a b x[ ] S xffff bb L); /* */

b = FF(b c d a x[ ] S x cd beL); /* */

a = FF(a b c d x[ ] S x b L); /* */

d = FF(d a b c x[ ] S xfd L); /* */

c = FF(c d a b x[ ] S xa eL); /* */

b = FF(b c d a x[ ] S x b L); /* */

/* Round */

a = GG(a b c d x[ ] S xf e L); /* */

d = GG(d a b c x[ ] S xc b L); /* */

c = GG(c d a b x[ ] S x e a L); /* */

b = GG(b c d a x[ ] S xe b c aaL); /* */

a = GG(a b c d x[ ] S xd f dL); /* */

d = GG(d a b c x[ ] S x L); /* */

c = GG(c d a b x[ ] S xd a e L); /* */

b = GG(b c d a x[ ] S xe d fbc L); /* */

a = GG(a b c d x[ ] S x e cde L); /* */

d = GG(d a b c x[ ] S xc d L); /* */

c = GG(c d a b x[ ] S xf d d L); /* */

b = GG(b c d a x[ ] S x a edL); /* */

a = GG(a b c d x[ ] S xa e e L); /* */

d = GG(d a b c x[ ] S xfcefa f L); /* */

c = GG(c d a b x[ ] S x f d L); /* */

b = GG(b c d a x[ ] S x d a c aL); /* */

/* Round */

a = HH(a b c d x[ ] S xfffa L); /* */

d = HH(d a b c x[ ] S x f L); /* */

c = HH(c d a b x[ ] S x d d L); /* */

b = HH(b c d a x[ ] S xfde cL); /* */

a = HH(a b c d x[ ] S xa beea L); /* */

d = HH(d a b c x[ ] S x bdecfa L); /* */

c = HH(c d a b x[ ] S xf bb b L); /* */

b = HH(b c d a x[ ] S xbebfbc L); /* */

a = HH(a b c d x[ ] S x b ec L); /* */

d = HH(d a b c x[ ] S xeaa faL); /* */

c = HH(c d a b x[ ] S xd ef L); /* */

b = HH(b c d a x[ ] S x d L); /* */

a = HH(a b c d x[ ] S xd d d L); /* */

d = HH(d a b c x[ ] S xe db e L); /* */

c = HH(c d a b x[ ] S x fa cf L); /* */

b = HH(b c d a x[ ] S xc ac L); /* */

/* Round */

a = II(a b c d x[ ] S xf L); /* */

d = II(d a b c x[ ] S x aff L); /* */

c = II(c d a b x[ ] S xab a L); /* */

b = II(b c d a x[ ] S xfc a L); /* */

a = II(a b c d x[ ] S x b c L); /* */

d = II(d a b c x[ ] S x f ccc L); /* */

c = II(c d a b x[ ] S xffeff dL); /* */

b = II(b c d a x[ ] S x dd L); /* */

a = II(a b c d x[ ] S x fa e fL); /* */

d = II(d a b c x[ ] S xfe ce e L); /* */

c = II(c d a b x[ ] S xa L); /* */

b = II(b c d a x[ ] S x e a L); /* */

a = II(a b c d x[ ] S xf e L); /* */

d = II(d a b c x[ ] S xbd af L); /* */

c = II(c d a b x[ ] S x ad d bbL); /* */

b = II(b c d a x[ ] S xeb d L); /* */

state[ ] += a;

state[ ] += b;

state[ ] += c;

state[ ] += d;

}

/*Encode把long数组按顺序拆成byte数组 因为java的long类型是 bit的

只拆低 bit 以适应原始C实现的用途

*/

private void Encode(byte[] output long[] input int len) {

int i j;

for (i = j = ; j len; i++ j += ) {

output[j] = (byte) (input[i] xffL);

output[j + ] = (byte) ((input[i] ) xffL);

output[j + ] = (byte) ((input[i] ) xffL);

output[j + ] = (byte) ((input[i] ) xffL);

}

}

/*Decode把byte数组按顺序合成成long数组 因为java的long类型是 bit的

只合成低 bit 高 bit清零 以适应原始C实现的用途

*/

private void Decode(long[] output byte[] input int len) {

int i j;

for (i = j = ; j len; i++ j += )

output[i] = b iu(input[j]) | (b iu(input[j + ]) ) | (b iu(input[j + ]) )

| (b iu(input[j + ]) );

return;

}

/*

b iu是我写的一个把byte按照不考虑正负号的原则的"升位"程序 因为java没有unsigned运算

*/

public static long b iu(byte b) {

return b ? b x F + : b;

}

/*byteHEX() 用来把一个byte类型的数转换成十六进制的ASCII表示

因为java中的byte的toString无法实现这一点 我们又没有C语言中的

sprintf(outbuf % X ib)

*/

public static String byteHEX(byte ib) {

char[] Digit = { A B C D E F };

char[] ob = new char[ ];

ob[ ] = Digit[(ib ) X F];

ob[ ] = Digit[ib X F];

String s = new String(ob);

return s;

}

public static void main(String args[]) {

MD m = new MD ();

if (Array getLength(args) == ) { //如果没有参数 执行标准的Test Suite

System out println( MD Test suite: );

System out println( MD (\ \ ): + m getMD ofStr( ));

System out println( MD (\ a\ ): + m getMD ofStr( a ));

System out println( MD (\ abc\ ): + m getMD ofStr( abc ));

System out println( MD (\ \ ): + m getMD ofStr( ));

System out println( MD (\ \ ): + m getMD ofStr( ));

System out println( MD (\ message digest\ ): + m getMD ofStr( message digest ));

System out println( MD (\ abcdefghijklmnopqrstuvwxyz\ ): + m getMD ofStr( abcdefghijklmnopqrstuvwxyz ));

System out println( MD (\ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz \ ):

+ m getMD ofStr( ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ));

} else

System out println( MD ( + args[ ] + )= + m getMD ofStr(args[ ]));

}

lishixinzhi/Article/program/Java/hx/201311/26604

javamd5工具包的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、javamd5工具包的信息别忘了在本站进行查找喔。

本文来自投稿,不代表【】观点,发布者:【

本文地址: ,如若转载,请注明出处!

举报投诉邮箱:253000106@qq.com

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2024年3月29日 16:17:09
下一篇 2024年3月29日 16:26:18

相关推荐

  • 关于avrstudio6c语言的信息

    c语言的程序员们你们公司用的开发工具是什么呢? 学c语言可以用的软件推荐如下:TurboC是由美国Borland公司开发的一套C语言程序开发工具,Borland公司是一家专门从事软件开发、研制的大公司。 Code:Blocks是一个开放源码的全功能的跨平台C/C++集成开发环境。Code:Blocks是开放源码软件。Code:Blocks由纯粹的C++语言开…

    2024年5月23日
    4600
  • 关于java如何查找线程的信息

    kill-3生成的线程堆栈怎么查看 通过给JVM发送一个SIGQUIT信号,您可以得到一个线程堆。 threaddump文件就是文本文件,可以使用任何文本查看工具进行查看; 建议使用比较高效的工具,比如more, less 等。 “Full thread dump”是一个全局唯一的关键字,你可以在中间件和单机版本Java的线程堆栈信息的输出日志中找到它(比如…

    2024年5月23日
    4000
  • 关于javasocketreader的信息

    用JAVA编写一个socket通信程序。 1、java编程对于Socket之间的通信过程如下:服务端往Socket的输出流里面写东西,客户端就可以通过Socket的输入流读取对应的内容。 2、服务端初始化ServerSocket,然后对指定的端口进行绑定,接着对端口及进行监听,通过调用accept方法阻塞。 此时,如果客户端有一个socket连接到服务端,那…

    2024年5月23日
    7900
  • 关于javapitfallspdf的信息

    怎么用java动态生成pdf文档 1、首先,您需要在 Java 程序中添加 Spire.Xls.jar 文件作为依赖项。您可以从这个链接下载 JAR 文件;如果您使用 Maven,则可以通过在 pom.xml 文件中添加以下代码导入 JAR 文件。 2、iText是着名的开放源码的站点sourceforge一个项目,是用于生成PDF文档的一个java类库。通…

    2024年5月23日
    4300
  • 关于pythonexcel打印设置字体的信息

    如何使用python更改excel表中的字体属性 字体,背景,边框等的颜色都可以通过三种方式设置:索引,aRGB或主题。 索引颜色是旧版实现,颜色本身取决于工作薄或应用程序默认提供的索引。主题颜色可用于互补色,但也取决于工作薄中存在的主题,因此,建议使用RGB颜色。 有着一定的参考价值,有需要的朋友可以参考一下可使用的第三方库python中处理excel表格…

    2024年5月23日
    4600
  • 关于linuxjpeg下载的信息

    请问怎么用grub2直接引导win10,本人Linux新手 第一步,当然是下载linux ubuntu1x的镜像了,这个小伙伴可以百度,去正规的网站现在,这里,我先提供一个站点:mirrors.xmu.edu.cn,厦门大学的信息与网络中心。里面有很多linux版本。有Deepin CenOS ubuntu什么什么的。 第一步:\x0d\x0a当然是下载Ub…

    2024年5月23日
    5200
  • 关于excel2013vc的信息

    如何利用VC++自动生成Excel表格 1、首先,我们需要点击文件菜单栏按钮。然后,我们点击生成EXE按钮。接下来,我们点击保存路径。然后,我们输入我们想要保存的文件名。最后,我们点击确定按钮。然后,我们便可以看到,在桌面生成了Excel表格了。 2、在主对话框中加入一个按钮 ID IDC_EXCELTEST Caption Test Excel 双击该按钮…

    2024年5月23日
    5200
  • 关于2t硬盘linux分区的信息

    linux硬盘2TB限制问题 1、Linux中进行磁盘分区一般是用fdisk这个命令,但是fdisk命令无法支持大于2TB以上的分区,而parted命令却是用于2TB以上大小的磁盘分区的工具。 2、asm无法识别2t磁盘是因为在分区的时候造成的,所以asm和linux都会有这个2T的限制。磁盘分区主要有MBR和GPT两种方式,发生2T限制的正是这个MBR方式…

    2024年5月23日
    8300
  • 关于linux下载geneontology的信息

    下载GO/KEGG某一pathway的genelist 功能(GO)或者通路(Pathway)富集分析时,都会涉及到 Background; 做分析时,分析工具会提供一些数据供使用者选择或者使用自定义的gene list。 clusterProfiler是一个功能强大的R包,同时支持GO和KEGG的富集分析,而且可视化功能非常的优秀,本章主要介绍利用这个R包…

    2024年5月23日
    5000
  • 关于linux下的mnt目录的信息

    Linux目录结构 总体而言,Linux系统的文件系统由块设备、分区、文件系统、目录结构、文件和元数据以及挂载点等组成。这种组织结构和层次关系提供了对文件和目录的有效管理和访问机制。 根目录和家目录均只是一种linux文件挂载点,linux采用树状发展目录结构根目录就是第一级,家目录与根目录看起来只是一个一级目录和二级目录的关系,实际上差别很大。 首先,打开…

    2024年5月23日
    5400

发表回复

登录后才能评论



关注微信